Land use change and climate dynamics in the Rift Valley Lake Basin, Ethiopia

Author:

Ayalew Ayenew D.ORCID,Wagner Paul D.,Sahlu Dejene,Fohrer Nicola

Abstract

AbstractLand use and climate dynamics have a pronounced impact on water resources, biodiversity, land degradation, and productivity at all scales. Thus, in this study, we present the spatio-temporal dynamics of land use change and climate aiming to provide a scientific evidence about gains and losses in major land use categories and associated drivers and significancy and homogeneity of climate change. To this end, Landsat images and historical climate data have been used to determine the dynamics. In addition, population census data and land use policy have been considered to assess the potential drivers of land use change. The spatio-temporal land use dynamics have been evaluated using transition matrix and dynamics index. Likewise, shifts in the climate data were analyzed using change point analysis and three homogenous climate zones have been identified using principal component analysis. The results show that, from 1989 to 2019, the areal percentage of agricultural land increased by 27.5%, settlement by 0.8%, and barren land 0.4% while the natural vegetation, wetland, water body, and grass land decreased by 24.5%, 1.6%, 0.5%, and 2.1%, respectively. The land use dynamics have been stronger in the first decade of the study period. An abrupt shift of climate has occurred in the 1980s. In the last four decades, rainfall shows a not significant decreasing trend. However, a significant increasing trend has been observed for temperature. Rapid population growth, agricultural expansion policy, and climate variability have been identified as the underlying drivers of land use dynamics.

Funder

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

Reference136 articles.

1. Abdullah, H. M., Mahboob, M. G., Rahman, M. M., & Ahmed, T. (2015). Monitoring natural Sal forest cover in Modhupur, Bangladesh using temporal Landsat imagery during 1972–2015. International Journal of Environment, 5, 1–7.

2. Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E. M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using rapideye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35, 3440–3458.

3. Alemayehu, T., Ayenew, T., & Kebede, S. (2006). Hydrogeochemical and lake level changes in the Ethiopian Rift. Journal of Hydrology, 316, 290–300.

4. Alley, R. B., Marotzke, J., Nordhaus, W., Overpeck, J., Peteet, D., Pielke, R., Pierrehumbert, R., Rhines, P., Stocker, T., & Talley, L. (2002). Abrupt climate change: Inevitable surprises. National Academy Press.

5. Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke, R. A., Pierrehumbert, R. T., Rhines, P. B., Stocker, T. F., & Talley, L. D. (2003). Abrupt climate change. Science, 299, 2005–2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3