A portable low-cost device to quantify advective gas fluxes from mofettes into the lower atmosphere: First application to Starzach mofettes (Germany)

Author:

Büchau Yann GeorgORCID,Leven CarstenORCID,Bange JensORCID

Abstract

AbstractIn this study, we introduce a portable low-cost device for in situ gas emission measurement from focused point sources of CO2, such as mofettes. We assess the individual sensors’ precision with calibration experiments and perform an independent verification of the system’s ability to measure gas flow rates in the range of liters per second. The results from one week of continuous CO2 flow observation from a wet mofette at the Starzach site is presented and correlated with the ambient meteorological dynamics. In the observed period, the gas flow rate of the examined mofette exhibits a dominant cycle of around four seconds that is linked to the gas rising upwards through a water column. We find the examined mofette to have a daily emission of 465 kg ±16 %. Furthermore, two events were observed that increased the flow rate abruptly by around 25 % within only a few minutes and a decaying period of 24 hours. These types of events were previously observed by others at the same site but dismissed as measurement errors. We discuss these events as a hydrogeological phenomenon similar to cold-water geyser eruptions. For meteorological events like the passages of high pressure fronts with steep changes in atmospheric pressure, we do not see a significant correlation between atmospheric parameters and the rate of gas exhalation in our one-week time frame, suggesting that on short timescales the atmospheric pumping effect plays a minor role for wet mofettes at the Starzach site.

Funder

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3