Temporal variability of a protected multispecific tropical seagrass meadow in response to environmental change

Author:

Alonso Aller E.,Eklöf J. S.,Gullström M.,Kloiber U.,Linderholm H. W.,Nordlund L. M.ORCID

Abstract

AbstractIn a changing environment, there is an increasing interest to monitor ecosystems to understand their responses to environmental change. Seagrass meadows are highly important ecosystems that are under constant pressure from human activities and climate impacts, with marked declines observed worldwide. Despite increasing efforts, monitoring of multispecific tropical seagrass meadows is scarce, particularly in low-income regions. Based on data from a monitoring programme in a marine protected area in Zanzibar (Tanzania), we assessed temporal changes in seagrass cover and species composition during a 10-year period in relation to local variability in environmental variables. We observed a strong, gradual decline in seagrass cover and changes in species composition, followed by a period of recovery. However, the timing and length of these temporal patterns varied in space (between transects). Multiple environmental variables—cloud cover, temperature, storm occurrence, sunspot activity, and tidal amplitude and height—influenced seagrass cover, although only to a minor extent, suggesting that the monitored seagrass meadow may be influenced by other unmeasured factors (e.g. water currents and sediment movement). Our results show that seagrass meadows can be highly dynamic at small (10–50 m) spatial scales, even in the absence of major local anthropogenic impacts. Our findings suggest that high-resolution monitoring programmes can be highly valuable for the detection of temporal changes in multispecific seagrass meadows; however, to understand the causes of change, there is a need of long-term (> 10 years) data series that include direct measurements of environmental variables and extreme events.

Funder

Swedish Research Council Formas

Swedish Research Council

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3