Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine
Reference69 articles.
1. Amini, S., Homayounib, S., Safari, A., & Darvishsefat, A. A. (2018). Object-based classification of hyperspectral data using Random Forest algorithm. Geo-spatial Information Science, 21(2), 127–138. https://doi.org/10.1080/10095020.2017.1399674.
2. Aronoff, S. (2005). Remote sensing for GIS managers. Redlands: ESRI Press xiiii and 487 pp., diagrams, photos, images, appendices, index. ISBN 1-58948-081-3, https://trove.nla.gov.au/version/40025360.
3. Attarchi, S., & Gloaguen, R. (2014). Classifying complex mountainous forests with L-band SAR and Landsat data integration: A comparison among different machine learning methods in the Hyrcanian Forest. Remote Sensing, 6(5), 3624–3647. https://doi.org/10.3390/rs6053624.
4. Awad. M. M. (2018) Forest mapping: a comparison between hyperspectral and multispectral images and technologies. Journal of Forestry Research, 29 (5):1395-1405, https://doi.org/10.1007/s11676-017-0528-y
5. Bagaram, M., Giuliarelli, D., Chirici, G., Giannetti, F., & Barbati, A. (2018). UAV remote sensing for biodiversity monitoring: Are forest canopy gaps good covariates? Remote Sensing, 10(9), 1397. https://doi.org/10.3390/rs10091397.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献