Comparison of three sampling methods for small-bodied fish in lentic nearshore and open water habitats

Author:

Merz Joseph E.ORCID,Anderson Jesse T.,Wiesenfeld Jesse,Zeug Steven C.

Abstract

AbstractWe performed a preliminary evaluation of a mobile sampling platform with adjustable push net and live box (Platform) against two common methods for sampling small-bodied fish (i.e., 10–100 mm) in two distinct lentic habitats. Nearshore (NS) littoral habitat was sampled by Platform and beach seine, and open water (OW) pelagic habitat by Platform and Kodiak trawl. Our goal was to evaluate the Platform’s ability to describe fish assemblage structure across habitat types in contrast to common techniques restricted to single habitat types that are less comparable due to gear-specific bias. Platform sample speed had a significant positive effect on recapture efficiency of both nearly neutrally buoyant objects and marked fish. Marked fish recapture efficiencies were similar for Platform in NS and OW, indicating similar efficiency across habitat types. Platform capture efficiency was similar to beach seine and greater than Kodiak trawl. With similar sampling time, the Platform collected more individuals and taxa in NS relative to beach seine and in OW relative to Kodiak trawl. Greater taxa detection by the Platform suggests that it may be effective at detecting species that are numerically rare in specific habitats when compared to these methods. Fish CPUE was significantly greater NS regardless of technique. However, by using the Platform, there is greater confidence that this difference was reliable and not a gear selectivity artifact. Overall, this preliminary study demonstrates the Platform’s potential to collect standardized data across NS and OW habitats, track ontogenetic habitat shifts, and detect differences in small-bodied fish taxa richness, relative abundance, and density between NS and OW habitats. Continued experimentation beyond a single reservoir and fish size range is required before consensus can be established regarding the utility of this new push net design.

Funder

U.S. Department of the Interior

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3