Characterizing spatiotemporal variations of polycyclic aromatic hydrocarbons in Taihu Lake, China

Author:

Li AiliORCID,der Beek Tim aus,Zhang Jin,Schmid Cora,Schüth Christoph

Abstract

AbstractIn this study, we analyzed the concentration distributions of 20 polycyclic aromatic hydrocarbons (PAHs) in 41 water samples which were collected from the northern part of Taihu Lake during 4 field campaigns (201511, 201606, 201702 and 201709). The concentrations were determined with GC–MS, and their spatial and seasonal distribution characteristics were interpreted. The results show that 2-ring PAHs present considerably higher concentrations in warm seasons than cold seasons, but the concentrations of the other higher-ring PAHs are rather stable in warm and cold seasons. The distribution patterns of these PAHs might be mainly attributed to ambient temperature effects on the PAH solubility in the water body. Meanwhile, the spatial distributions of the PAH concentrations in cold seasons were rather various in the sampling area, while the distributions in the warm seasons were homogeneous. The different distributions could result from the water recharge from the Yangtze River during cold seasons, which diluted PAH concentrations in the northeastern part of the lake. Furthermore, via literature review on PAH concentrations in water body, PAHs are in a wide range of levels and their patterns are different among the studies, which should be more effected by local factors instead of general PAH properties. The results from this study also present special characteristics of PAHs in Taihu Lake, which exhibit more insight on PAHs existence in water bodies.

Funder

BMBF Germany

International Science and Technology Cooperation Programme

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3