Potential impacts of climate change on renewable energy in Egypt

Author:

Hassaan Mahmoud AdelORCID,Abdrabo Mohamed Abdel Karim AlyORCID,Hussein Hadeer Ahmed,Ghanem Azza Abdallah Abdelhamid,Abdel-Latif Hany

Abstract

AbstractThe need for renewable energy sources is recently necessitated by attaining sustainability and climate change mitigation. Accordingly, the use of renewable energy sources has been growing rapidly during the last two decades. Yet, the potentials of renewable energy sources are generally influenced by several climatic factors that either determine the source of energy such as wind speed in the case of wind power or affect the performance of system such as the reduction in solar PV power production due to temperature increase. This highlights the need for assessing climate change impacts on renewable energy sources in the future to ensure their reliability and sustainability.This paper is intended to assess impacts of climate change on wind and solar potential energy in Egypt by the year 2065 under RCP 8.5 scenario. For this purpose, a GIS-based methodology of three main steps was applied. The results revealed that solar energy potential in Egypt is expected to be relatively less vulnerable to climate change compared to wind energy. In this respect, it was found that while wind energy potential was estimated to range ± 12%. By the year 2065 under RCP 8.5 scenario, PV module power is expected to decrease by about 1.3% on average. Such assessment can assist in developing more sustainable and flexible renewable energy policy in Egypt.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3