Author:
Ture Narayan,Desai Drashti,Shende Pravin
Abstract
AbstractDespite recent advances in the treatment of human colon cancer, the chemotherapeutic efficacy against colon cancer is still unsatisfactory. The complexity in colorectal cancer treatment leads to new research in combination therapy to overcome multidrug resistance in cancer and increase apoptosis. The objective of the present research work was to develop polyplexes for co-delivery of plasmid DNA with retinoic acid against colorectal cancer cell line (HCT-15). Plain polyplexes were prepared using chitosan and hyaluronic acid solution (0.1% w/v), whereas retinoic acid polyplexes were prepared using ethanol: water (1:9 v/v) system. The particle size was observed in the order of chitosan solution > blank polyplex > retinoic acid-loaded polyplex. Encapsulation efficiency of retinoic acid was found to be 81.51 ± 4.33% for retinoic acid-loaded polyplex formulation. The drug release was observed to be in a controlled pattern with 72.23 ± 1.32% release of retenoic acid from polyplex formulation. Cell line studies of the formulation displayed better cell inhibition and low cytotoxicity for the retinoic acid-loaded polyplexes in comparison to pure retinoic acid, thus demonstrating better potential action against colorectal cancer cell line HCT-15. Retinoic acid-loaded polyplexes indicated higher potential for the delivery of the active whereas the cell line studies displayed the efficacy of the formulation against colorectal cancer cell line HCT-15.
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials,Bioengineering,Biophysics
Reference30 articles.
1. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751.
2. Adil MM, Erdman ZS, Kokkoli E. Transfection mechanisms of polyplexes, lipoplexes, and stealth liposomes in α5β1 integrin bearing DLD-1 colorectal cancer cells. Langmuir. 2014;30:3802–10.
3. Schaffer DV, Fidelman NA, Dan N, Lauffenburger DA. Vector unpacking as a potential barrier for receptor‐mediated polyplex gene delivery. Biotech Bioeng. 2000;67:598–606.
4. Conti M, Tazzari V, Baccini C, Pertici G, Serino LP, De Giorgi U. Anticancer drug delivery with nanoparticles. In Vivo.2006;20:697–702.
5. Jafari M, Soltani M, Naahidi S, Karunaratne N, Chen D, Nonviral P. Approach for targeted nucleic acid delivery. Curr Med Chem. 2012;19:197–208.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献