Herbalism and glass-based materials in dentistry: review of the current state of the art

Author:

Singer LamiaORCID,Bourauel Christoph

Abstract

AbstractHalf a million different plant species are occurring worldwide, of which only 1% has been phytochemically considered. Thus, there is great potential for discovering novel bioactive compounds. In dentistry, herbal extracts have been used as antimicrobial agents, analgesics, and intracanal medicaments. Glass-ionomer cement (GIC) and bioactive glass (BAG) are attractive materials in dentistry due to their bioactivity, adhesion, and remineralisation capabilities. Thus, this review summarizes the evidence around the use of phytotherapeutics in dental glass-based materials. This review article covers the structure, properties, and clinical uses of GIC and BAG materials within dentistry, with an emphasis on all the attempts that have been made in the last 20 years to enhance their properties naturally using the wisdom of traditional medicines. An extensive electronic search was performed across four databases to include published articles in the last 20 years and the search was concerned only with the English language publications. Publications that involved the use of plant extracts, and their active compounds for the green synthesis of nanoparticles and the modification of GIC and BAG were included up to May 2023. Plant extracts are a potential and effective candidate for modification of different properties of GIC and BAG, particularly their antimicrobial activities. Moreover, natural plant extracts have shown to be very effective in the green synthesis of metal ion nanoparticles in an ecological, and easy way with the additional advantage of a synergistic effect between metal ions and the phytotherapeutic agents. Medicinal plants are considered an abundant, cheap source of biologically active compounds and many of these phytotherapeutics have been the base for the development of new lead pharmaceuticals. Further research is required to assess the safety and the importance of regulation of phytotherapeutics to expand their use in medicine. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3