Aspirin/PLGA coated 3D-printed Ti-6Al-4V alloy modulate macrophage polarization to enhance osteoblast differentiation and osseointegration

Author:

You Yapeng,Wang Wanmeng,Li YingORCID,Song Yunjia,Jiao Jian,Wang Yao,Chen Bo,Liu Jialin,Qi Hui,Liang Yu

Abstract

AbstractAlthough titanium (Ti) and Ti-based alloy have been widely used as dental and orthopedic implant materials, its bioinertness hindered the rapid osseointegration. Therefore, it is recommended to acquire ideal topographic and chemical characteristics through surface modification methods. 3D printing is a delicate manufacture technique which possesses superior controllability and reproducibility. While aspirin serve as a well-established non-steroidal anti-inflammatory agent. Recently, the importance of immune system in regulating bone dynamics has attracted increasing attention. We herein superimposed the aspirin/poly (lactic–co–glycolic acid) (ASP/PLGA) coating on the 3D-printed Ti-6Al-4V surface with uniform micro-structure to establish the Ti64-M-ASP/PLGA substrate. Scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and contact angle test confirmed the successful fabrication of the Ti64-M-ASP/PLGA substrate, with increased wettability and sustained release pattern of ASP. Compared with the Ti64 base material, the Ti64-M-ASP/PLGA substrate showed enhanced M2 and depressed M1 genes and proteins expressions in macrophages. The novel Ti64-M-ASP/PLGA substrate also displayed enhanced osteoblast proliferation, adhesion, extracellular mineralization ability and osteogenic gene expressions when cultured with macrophage conditioned medium in vitro. Furthermore, rat femora implantation model was used for in vivo evaluation. After 4 weeks of implantation, push out test, micro-computed tomography (micro-CT) and histological analyses all confirmed the superior osseointegration capabilities of the Ti64-M-ASP/PLGA implant than the other groups. Our study revealed the synergistic role played by 3D-printed micro topography and immunoregulatory drug aspirin in promoting osteogenesis in vitro and accelerating osseointegration in vivo, thus providing a promising method for better modifying the implant surface.

Funder

National Natural Science Foundation of China

Tianjin Municipal Health Bureau

Natural Science Foundation of Tianjin City

Tianjin Education Commission

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3