Enhancing antibacterial property of porous titanium surfaces with silver nanoparticles coatings via electron-beam evaporation

Author:

Zhang Xiaoyu,Li Yaoxu,Luo Xiaobing,Ding YumeiORCID

Abstract

AbstractAntibacterial activity is one of the most vital characteristics for Titanium (Ti) dental implants. Coating antibacterial material onto Ti surfaces is an effective approach to enhance their intrinsic antibacterial ability. However, a cost-effective but efficient coating strategy for realizing this objective still remains challenging. In this study, we proposed a novel implant surface modification strategy for coating silver nanoparticles onto the porous Ti surface via a facile electron beam evaporation (EBE) approach. Porous Ti surfaces were firstly prepared by sand-blasting large grit acid-etching (SLA) process. Then, the silver nanoparticles coating thickness on the porous Ti surface was adjusted and optimized by altering the duration of EBE process. Consequently, composite porous Ti surfaces with different silver thicknesses were synthesized. Polished Ti (PT) surface without SLA or EBE process was also prepared as the controlled blank group. The surface characterizations were analyzed by SEM, AFM, and XPS. After that, the antibacterial properties of all groups were tested with bacteria counting method, bacterial viability test, live/dead bacterial staining, and SEM examination. Results show that silver nanoparticles were uniformly distributed on the porous Ti surfaces after the SLA and EBE processes. After being incorporated with silver nanoparticles, the composite surfaces successfully inhibited the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The antibacterial ratio (AR) values of SLA-Ag groups increased with the increasing silver thickness and are significantly higher than those of PT and SLA groups. Therefore, by the SLA and EBE processes, the composite porous Ti surfaces modified with silver nanoparticles coatings demonstrate superior antibacterial property compared with pure Ti surfaces, which is highly promising for enhancing the antibacterial functions of dental implants.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3