Release of ranibizumab using a porous poly(dimethylsiloxane) capsule suppressed laser-induced choroidal neovascularization via the transscleral route

Author:

Nagai NobuhiroORCID,Daigaku Reiko,Motoyama Remi,Kaji Hirokazu,Abe Toshiaki

Abstract

AbstractThe administration of anti-vascular endothelial growth factor drugs in the posterior eye segment with sustained release through less invasive methods is a challenge in the treatment of age-related macular disease. We developed a flexible capsule device using porous poly(dimethylsiloxane) (PDMS) that was able to release ranibizumab. The porous PDMS sheet was fabricated by salt-leaching of a micro-sectioned PDMS sheet containing salt microparticles. Observation with scanning electron microscopy revealed that the pore densities could be adjusted by the concentration of salt. The in vitro release study showed that the release rate of fluorescein isothiocyanate-tagged albumin could be adjusted based on the pore density of the porous PDMS sheet. Ranibizumab could be released in a sustained-release manner for 16 weeks. The device was implanted on the sclera; its efficacy in terms of the suppression of laser-induced choroidal neovascularization (CNV) in rats was compared with that of monthly intravitreal injections of ranibizumab. At 8 and 18 weeks after implantation, the CNV area was significantly reduced in rats that received the ranibizumab-releasing device compared with those that received the placebo device. However, although monthly intravitreal injections of ranibizumab reduced CNV for 8 weeks, this reduction was not sustained for 18 weeks. In conclusion, we demonstrated a novel controlled-release device using a porous PDMS sheet that could suppress CNV via a less invasive transscleral route versus intravitreal injections. This device may also reduce the occurrence of side effects associated with frequent intravitreal injections. Graphical Abstract

Funder

Japan Agency for Medical Research and Development

Tohoku University

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3