Dexamethasone-loaded keratin films for ocular surface reconstruction

Author:

Schwab Rebekka,Reichl StephanORCID

Abstract

AbstractAmniotic membrane (AM) is often applied as a substitute material during ocular surface reconstruction. However, since AM has several disadvantages, alternative materials must be considered for this application. Keratin films made from human hair (KFs) have previously been presented as a promising option; they exhibited suitable characteristics and satisfactory biocompatibility in an in vivo rabbit model. Nevertheless, dexamethasone (DEX) eye drops are necessary after surgery to suppress inflammation. Since eye drops must be administered frequently, this might result in poor patient compliance, and the release of DEX at the transplant site would be clinically beneficial. Therefore, we aimed to incorporate DEX into KFs without hindering the positive film characteristics. Drug-loaded KFs were generated either by suspension technique or by the addition of solubilizing agents. The resulting specimens were analyzed regarding appearance, loading capacity, transparency, mechanical characteristics, swelling behavior and in vitro release. Furthermore, biocompatibility was assessed in vitro by determining the cell viability, seeding efficiency and growth behavior of corneal epithelial cells. The amount of incorporated DEX influenced the transparency and biomechanical properties of the films, but even highly loaded films showed properties similar to those of AM. The suspension technique was identified as the best incorporation approach regarding chemical stability and prolonged DEX release. Moreover, suspended DEX in the films did not negatively impact cell seeding efficiencies, and the cell-growth behaviors on the specimens with moderate DEX loads were satisfactory. This suggest that these films could comprise a suitable alternative material with additional anti-inflammatory activity for ocular surface reconstruction.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3