Vacuum sealing drainage system combined with an antibacterial jackfruit aerogel wound dressing and 3D printed fixation device for infections of skin soft tissue injuries

Author:

Hu Xin,Li Huijian,Guo Wenting,Xiang Huiqin,Hao Liang,Ai Fanrong,Sahu Souradeep,Li ChenORCID

Abstract

AbstractInjuries and infections of skin and soft tissue are commonly encountered in primary health care and are challenging to manage. Vacuum sealing drainage (VSD) is generally used in clinical treatment, but current commercial methods of VSD have some disadvantages, such as easy blockage, nonantibacterial effects, and inconvenient curved surfaces. Herein, we report a functional zinc oxide/jackfruit aerogel (ZnO/JFA) composite material that is ultralight, superabsorbent and antibacterial as a new antibacterial VSD wound dressing. The JFA is carbonized from fresh jackfruit, and the JFA exhibits superhydrophilicity and superabsorbability. The water absorption rate of JFA was up to 1209.39%, and the SBF absorption rate was up to 1384.22%. The water absorption rate of ZnO/JFA was up to 494.47%, and the SBF absorption rate was up to 473.71%. The JFA and ZnO/JFA possess a pipeline structure, which is beneficial for absorbing wound exudates. In addition, surface modification of nanosized ZnO and its effects on antibacterial properties and biocompatibility were performed. When the concentration of ZnO/JFA was 3.125 mg/mL, the survival rate of human fibroblast cells was close to 80%, while the antibacterial rates against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli were up to 99.06%, 75.28% and 93.58%, respectively. Moreover, a 3D printed assisted device was introduced to make the ZnO/JFA wound dressing more attached to the bottom of the wound on a curved surface. An integrated device was formed under the printing mold, and then animal experiments were conducted in vivo. The results showed that a healing rate of almost 100% for infected skin wounds was obtained with this novel VSD device after 14 days, compared to only 79.65% without the VSD device. This novel VSD with a negative pressure suction dressing is beneficial for healing infectious wounds. Graphical Abstract

Funder

Key Research and Development Projects of Jiangxi Science and Technology Department

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3