Abstract
AbstractObjective: To study the bone induction and defect repair of true bone ceramics (TBC) combined with rhBMP-2 and Sr. Methods: MC3T3-E1 cells were used to evaluate the bioactivity of the composite. Cell proliferation activity was detected by CCK-8, ALP activity was detected by p-nitrophenyl phosphate (PNPP), and the differences of material surface topography were observed by scanning electron microscopy (SEM). Bone induction was verified by the implantation in nude mice. The rabbit femoral condyle defect model was achieved to verify the bone defect repair ability of the material. Results: SEM results showed nearly the same surface morphology and cell proliferation quantified by CCK-8 showed that compared with TBC, both TBC&Sr and TBC&BMP-2&Sr had a significant promoting effect (P < 0.05). ALP activity result showed that the ALP activity of TBC&BMP-2&Sr was significantly higher than that of TBC alone (P < 0.05). The bone induction result showed that TBC&Sr had a small amount of new bone formation, and the new bone area was only 2.5 ± 0.11%. The bone induction activity of TBC&BMP-2&Sr was the highest, the new bone area was up to 75.36 ± 4.21%. Histological result of bone defect repair showed that TBC&BMP-2&Sr was also the highest, the new bone area was up to 72.42 ± 3.14%. The repair effect of TBC& BMP-2 was second, and better than that of TBC&Sr. Conclusion: TBC combined with rhBMP-2 and Sr had the good bioactivity, obvious bone conduction and bone defect repair performance, laying the foundation of clinical application potentially.
Funder
National Natural Science Foundation of China
Military Medical Project
Natural Science Foundation of Liaoning Province
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials,Bioengineering,Biophysics
Reference15 articles.
1. Hasan A, Byambaa B, Morshed M, Cheikh MI, Shakoor RA, Mustafy T, et al. Advances in osteobiologic materials for bone substitutes. J Tissue Eng Regen Med. 2018;12:1448–68.
2. Kim YJ, Saiki CET, Silva K, Massuda CKM, de Souza Faloni AP, Braz-Silva PH, et al.Bone Formation in Grafts with Bio-Oss and Autogenous Bone at Different Proportions in Rabbit Calvaria. Int J Dent.2020;2020:2494128.
3. Qiao W, Ren X, Shi H, Li J, Yang T, Ma S, et al. [Biocompatibility research of true bone ceramics]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017;31:1250–5. Chinese.
4. Ge M, Ge K, Gao F, Yan W, Liu H, Xue L, et al. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly (L-lactic acid) scaffolds for bone defect repair. Int J Nanomed. 2018;13:1707–21.
5. Luo X, Barbieri D, Duan R, Yuan H, Bruijn JD. Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits. Acta Biomaterialia. 2015;26:331–7.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献