The potential influence of high uric acid exposure on surface and corrosion susceptibility of pure titanium

Author:

Liu Yao,Zhang Wen-si,Tang Ze-hua,Zhang Song-mei,Qiu JingORCID

Abstract

AbstractThis study investigated the corrosion susceptibility of pure titanium under uric acid exposure for 7 days based on surface analysis. The prepared pure titanium specimens, exposed to different concentrations of uric acid, were examined for surface microstructure, surface element composition and surface wettability using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and static contact angle measurement, respectively. The corrosion behaviors of titanium specimens were measured by open-circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The titanium ion release from the prepared specimens, which were immersed in Hank’s balanced salt solution (HBSS) containing different amount of uric acid, was measured by inductively coupled plasma atomic emission spectrometry (ICP-AES). More irregular pitting holes were observed on titanium surfaces exposed to a high concentration of uric acid, and XPS analyses revealed that the amount of titanium dioxide (TiO2) decreased. Titanium surfaces pre-treated with high uric acid became more hydrophobic. Furthermore, the results of OCP and potentiodynamic polarization tests showed increased corrosion susceptibility of titanium samples, while EIS data indicated more active corrosion behavior of titanium materials. The high concentration of uric acid also induced titanium ion release. High concentration of uric acid negatively influenced the surface characteristics and corrosion properties of titanium materials, which destroyed the titanium oxide film barrier. High uric acid exposure increased corrosion susceptibility of pure titanium specimens and accelerated titanium ion release.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3