Degree of conversion and residual monomer elution of 3D-printed, milled and self-cured resin-based composite materials for temporary dental crowns and bridges

Author:

Berghaus EvaORCID,Klocke Thorsten,Maletz Reinhard,Petersen SveaORCID

Abstract

AbstractThe aim of this work was to investigate the elution of residual monomers as a function of the manufacturing process, which are CAD/CAM manufacturing, self-curing and 3D printing. The experimental materials used consisted of the base monomers TEGDMA, Bis-GMA and Bis-EMA and 50 wt.% fillers. Additionally, a 3D printing resin without fillers was tested. The elution of the base monomers into the different media (water, ethanol and ethanol/water (75/25 vol. %)) at 37 °C over a period of up to 120 d as well as the degree of conversion (DC) by FTIR were investigated. No monomer elution could be detected in water. Most residual monomers in both other media were released from the self-curing material whereas the 3D printing composite released relatively little. The CAD/CAM blanks released hardly any quantitatively detectable amounts of monomers. Relative to the base composition, TEGDMA eluted less than Bis-GMA and Bis-EMA. DC did not correlate with residual monomer release; thus, leaching was determined not only by the amount of residual monomers present but by further factors as possibly network density and structure. The CAD/CAM blanks and the 3D printing composite showed similar high DC but lower residual monomer release from the CAD/CAM blank, likewise the self-curing composite and the 3D printing resin exhibited similar DC but different monomer elution. In terms of residual monomer elution and DC, the 3D printing composite seems promising as a new material class for the use as temporary dental crowns and bridges. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3