Influence of lactide vs glycolide composition of poly (lactic-co-glycolic acid) polymers on encapsulation of hydrophobic molecules: molecular dynamics and formulation studies

Author:

Dobhal Anurag,Srivastav Ashu,Dandekar PrajaktaORCID,Jain Ratnesh

Abstract

AbstractThe work demonstrates the preparation of PLGA (PLGA 50:50, PLGA 75:25) nanoparticles, to encapsulate a hydrophobic molecule (coumarin-6), using the microreactor-based continuous process. The formulations were characterized using dynamic light scattering and transmission electron microscopy to determine their size, homogeneity, zeta potential, and surface morphology. The resulting nanoparticles were safe to the CHO cells (≈80% cell survival), at the concentration of ≤600 µg/mL and were successfully taken up by the cells, as demonstrated using confocal microscopy. Moreover, imaging flow cytometry confirmed that the nanoparticles were internalized in 73.96% of the cells. Furthermore, molecular dynamics simulation and docking studies were carried out to explore the effect of polymer chain length of PLGA and lactide vs glycolide (LA:GA) ratio on their compatibility with the coumarin-6 molecules and to study the coiling and flexibility of PLGA in the presence of coumarin-6 molecules. Flory–Huggins interaction parameter (χ) was calculated for polymer chains of varying lengths and LA:GA ratio, with respect to coumarin-6. χ parameter increased with increase in polymer chain length, which indicated superior interaction of coumarin-6 with the smaller chains. Amongst all the polymeric systems, PLGA55 exhibited the strongest interaction with coumarin-6, for all the chain lengths, possibly because of their homogeneous spatial arrangements and superior binding energy. PLGA27 showed better compatibility compared to PLGA72 and PGA, whereas PLA-based polymers exhibited the least compatibility. Analysis of the radius of gyration of the polymer chains in the polymer–coumarin-6 complexes, at the end of molecular dynamics run, exhibited that the polymer chains displayed varying coiling behavior and flexibility, depending upon the relative concentrations of the polymer and coumarin-6. Factors like intra-chain interactions, spatial arrangement, inter-chain binding energies, and polymer–coumarin-6 compatibility also influenced the coiling and flexibility of polymer chains.

Funder

Department of Science Technology, Government of India

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3