Nanohydroxyapatite-Protein Interface in Composite Sintered Scaffold Influences Bone Regeneration in Rabbit Ulnar Segmental Defect

Author:

Radhakrishnan JananiORCID,Muthuraj Manjula,Gandham Gnana Santi Phani Deepika,Sethuraman SwaminathanORCID,Subramanian AnuradhaORCID

Abstract

AbstractThe healing physiology of bone repair and remodeling that occurs after normal fracture is well orchestrated. However, it fails in complex clinical conditions and hence requires augmentation by grafts. In this study, composite nanohydroxyapatite (nHA), poly(hydroxybutyrate) (PHB) and poly(ɛ-caprolactone) (PCL) constituted microspheres sintered three-dimensional scaffold were evaluated in rabbit ulnar segmental defect. A composite scaffold using PHB-PCL-nHA microspheres was developed with protein interface by solvent/non-solvent sintering to provide multiple cues such as biocomposition, cancellous bone equivalent meso-micro multi-scale porosity, and compressive strength. In vitro DNA quantification and alkaline phosphatase (ALP) assays revealed that the protein interfaced composite scaffolds supported osteoblast proliferation and mineralization significantly higher than scaffolds without protein and TCPS (p < 0.05). Scanning electron micrographs of osteoblasts cultured scaffolds demonstrated cell-matrix interaction, cell spreading, colonization and filopodial extension across the porous voids. Cylindrical scaffolds (5 × 10 mm) were implanted following segmental defect (10 mm) in rabbit ulnar bone and compared with untreated control. Radiography (4, 8 and 12 weeks) and µ-computed tomography (12 weeks) analysis showed directional bone tissue formation by bridging defective site in both scaffolds with and without protein interface. Whereas, undesired sclerotic-like tissue formation was observed in control groups from 8 weeks. Histology by hot Stevenel’s blue and van Gieson’s picrofuchsin staining has confirmed enhanced bone maturation in scaffold groups while presence of osteoids was observed in control after 12 weeks. Thus, the developed composite matrices exhibits osteoinductive, osteoconductive properties and demonstrates its bone regenerative potential owing to its compositional, micro & macro structural and mechanical properties.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3