Tissue reaction to novel customized calcium silicate cement based dental implants. A pilot study in the dog

Author:

Fakhrzadeh Amir,Saghiri Mohammad AliORCID,Morgano Steven M.,Sullivan Andrew

Abstract

Abstract Objectives The purpose of this study was to determine the level of periodontal tissue regeneration in a canine model following post-extraction placement of an implant molded from a composite material made from extracted tooth dentin and a calcium silicate cement (CSC) material. The investigation used autologous dentin in conjunction with a CSC material to form a composite implant designed for immediate tooth replacement. Methods Two (2) beagles had a periodontal and radiographic examination performed to rule out any pre-treatment inflammation, significant periodontal disease, or mobility. Then, ination eleven (11) teeth were extracted and polyvinyl siloxane molds were made to fabricate three different types of implants: Particulate Implant (Test Group 1, n = 4), Shell Implant Alone (Test Group 2, n = 2), Shell Implant with Emdogain® (Test Group 3, n = 3). Teeth in the control group were extracted, scaled (n = 2), and then re-implanted into their respective fresh extraction sockets. At 4 weeks, a clinical, radiographic, and histologic assessment was performed. Results Clinical evaluation revealed no mobility in any of the test or control implants and no radiographic evidence of significant bone loss or active disease. Based on the MicroCT analysis, direct bone to implant contact was observed in some areas with an apparent periodontal ligament space. Implant-related inflammation, on average, was similar among all groups, with low numbers of infiltrates. Implant-related inflammatory reaction was generally minimal and not interpreted to be adverse. Conclusion The proposed novel composite materials revealed that not only do these materials demonstrate high biocompatibility, but also their successful integration in the alveolus is likely secondary to a partial ligamentous attachment. The current investigation may lead to the use of calcium silicate-based materials as custom dental implants. Further research on this novel composite’s biomechanical properties is necessary to develop the optimal material composition for use as a load-bearing dental implant.

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Reference39 articles.

1. Branemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1–32.

2. Koldsland OC, Scheie AA, Aass AM. Prevalence of peri‐implantitis related to severity of the disease with different degrees of bone loss. J Periodontol. 2010;81:231–8.

3. Mohajerani H, Roozbayani R, Taherian S, Tabrizi R. The risk factors in early failure of dental implants: a retrospective study. J Dent. 2017;18:298.

4. Levin L. Dealing with dental implant failures. J Appl Oral Sci. 2008;16:171–5.

5. Caron G, Azérad J, Faure M-O, Machtou P, Boucher Y. Use of a new retrograde filling material (Biodentine) for endodontic surgery: two case reports. Int J Oral Sci. 2014;6:250.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3