Evaluating a cutting-edge augmented reality-supported navigation system for spinal instrumentation

Author:

Schwendner Maximilian,Ille SebastianORCID,Wostrack Maria,Meyer Bernhard

Abstract

Abstract Objective Dorsal instrumentation using pedicle screws is a standard treatment for multiple spinal pathologies, such as trauma, infection, or degenerative indications. Intraoperative three-dimensional (3D) imaging and navigated pedicle screw placement are used at multiple centers. For the present study, we evaluated a new navigation system enabling augmented reality (AR)-supported pedicle screw placement while integrating navigation cameras into the reference array and drill guide. The present study aimed to evaluate its clinical application regarding safety, efficacy, and accuracy. Methods A total of 20 patients were operated on between 06/2021 and 01/2022 using the new technique for intraoperative navigation. Intraoperative data with a focus on accuracy and patient safety, including patient outcome, were analyzed. The accuracy of pedicle screw placement was evaluated by intraoperative CT imaging. Results A median of 8 (4–18) pedicle screws were placed in each case. Percutaneous instrumentation was performed in 14 patients (70%). The duration of pedicle screw placement (duration scan–scan) was 56 ± 26 (30–107) min. Intraoperative screw revision was necessary for 3 of 180 pedicle screws (1.7%). Intraoperatively, no major complications occurred—one case of delay due to software issues and one case of difficult screw placement were reported. Conclusion The current study's results could confirm the use of the present AR-supported system for navigated pedicle screw placement for dorsal instrumentation in clinical routine. It provides a reliable and safe tool for 3D imaging-based pedicle screw placement, only requires a minimal intraoperative setup, and provides new opportunities by integrating AR.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3