Abstract
Abstract
Purpose
To develop and test synthetic vertebral stabilization techniques (“vertebropexy”) that can be used after decompression surgery and furthermore to compare them with a standard dorsal fusion procedure.
Methods
Twelve spinal segments (Th12/L1: 4, L2/3: 4, L4/5: 4) were tested in a stepwise surgical decompression and stabilization study. Stabilization was achieved with a FiberTape cerclage, which was pulled through the spinous process (interspinous technique) or through one spinous process and around both laminae (spinolaminar technique). The specimens were tested (1) in the native state, after (2) unilateral laminotomy, (3) interspinous vertebropexy and (4) spinolaminar vertebropexy. The segments were loaded in flexion–extension (FE), lateral shear (LS), lateral bending (LB), anterior shear (AS) and axial rotation (AR).
Results
Interspinous fixation significantly reduced ROM in FE by 66% (p = 0.003), in LB by 7% (p = 0.006) and in AR by 9% (p = 0.02). Shear movements (LS and AS) were also reduced, although not significantly: in LS reduction by 24% (p = 0.07), in AS reduction by 3% (p = 0.21). Spinolaminar fixation significantly reduced ROM in FE by 68% (p = 0.003), in LS by 28% (p = 0.01), in LB by 10% (p = 0.003) and AR by 8% (p = 0.003). AS was also reduced, although not significantly: reduction by 18% (p = 0.06). Overall, the techniques were largely comparable. The spinolaminar technique differed from interspinous fixation only in that it had a greater effect on shear motion.
Conclusion
Synthetic vertebropexy is able to reduce lumbar segmental motion, especially in flexion–extension. The spinolaminar technique affects shear forces to a greater extent than the interspinous technique.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献