Early evaluation of a natural language processing tool to improve access to educational resources for surgical patients

Author:

Booker JamesORCID,Penn Jack,Noor Kawsar,Dobson Richard J. B.,Funnell Jonathan P.,Koh Chan Hee,Khan Danyal Z.,Newall Nicola,Rowland David,Sinha Siddharth,Williams Simon C.,Sayal Parag,Marcus Hani J.

Abstract

Abstract Purpose Accessible patient information sources are vital in educating patients about the benefits and risks of spinal surgery, which is crucial for obtaining informed consent. We aim to assess the effectiveness of a natural language processing (NLP) pipeline in recognizing surgical procedures from clinic letters and linking this with educational resources. Methods Retrospective examination of letters from patients seeking surgery for degenerative spinal disease at a single neurosurgical center. We utilized MedCAT, a named entity recognition and linking NLP, integrated into the electronic health record (EHR), which extracts concepts and links them to systematized nomenclature of medicine-clinical terms (SNOMED-CT). Investigators reviewed clinic letters, identifying words or phrases that described or identified operations and recording the SNOMED-CT terms as ground truth. This was compared to SNOMED-CT terms identified by the model, untrained on our dataset. A pipeline linking clinic letters to patient-specific educational resources was established, and precision, recall, and F1 scores were calculated. Results Across 199 letters the model identified 582 surgical procedures, and the overall pipeline after adding rules a total of 784 procedures (precision = 0.94, recall = 0.86, F1 = 0.91). Across 187 letters with identified SNOMED-CT terms the integrated pipeline linking education resources directly to the EHR was successful in 157 (78%) patients (precision = 0.99, recall = 0.87, F1 = 0.92). Conclusions NLP accurately identifies surgical procedures in pre-operative clinic letters within an untrained subspecialty. Performance varies among letter authors and depends on the language used by clinicians. The identified procedures can be linked to patient education resources, potentially improving patients’ understanding of surgical procedures.

Funder

Wellcome Trust

EPSRC

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3