Differentiation of benign and malignant vertebral fractures using a convolutional neural network to extract CT-based texture features

Author:

Goller Sophia S.ORCID,Foreman Sarah C.,Rischewski Jon F.,Weißinger Jürgen,Dietrich Anna-Sophia,Schinz David,Stahl Robert,Luitjens Johanna,Siller Sebastian,Schmidt Vanessa F.,Erber Bernd,Ricke Jens,Liebig Thomas,Kirschke Jan S.,Dieckmeyer Michael,Gersing Alexandra S.

Abstract

Abstract Purpose To assess the diagnostic performance of three-dimensional (3D) CT-based texture features (TFs) using a convolutional neural network (CNN)-based framework to differentiate benign (osteoporotic) and malignant vertebral fractures (VFs). Methods A total of 409 patients who underwent routine thoracolumbar spine CT at two institutions were included. VFs were categorized as benign or malignant using either biopsy or imaging follow-up of at least three months as standard of reference. Automated detection, labelling, and segmentation of the vertebrae were performed using a CNN-based framework (https://anduin.bonescreen.de). Eight TFs were extracted: Varianceglobal, Skewnessglobal, energy, entropy, short-run emphasis (SRE), long-run emphasis (LRE), run-length non-uniformity (RLN), and run percentage (RP). Multivariate regression models adjusted for age and sex were used to compare TFs between benign and malignant VFs. Results Skewnessglobal showed a significant difference between the two groups when analyzing fractured vertebrae from T1 to L6 (benign fracture group: 0.70 [0.64–0.76]; malignant fracture group: 0.59 [0.56–0.63]; and p = 0.017), suggesting a higher skewness in benign VFs compared to malignant VFs. Conclusion Three-dimensional CT-based global TF skewness assessed using a CNN-based framework showed significant difference between benign and malignant thoracolumbar VFs and may therefore contribute to the clinical diagnostic work-up of patients with VFs.

Funder

DGMSR

MCSP

Deutsche Forschungsgemeinschaft

HORIZON EUROPE European Research Council

Universitätsklinik München

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3