Tissue response following implantation with the posterior dynamic distraction device (PDDD) in adolescent idiopathic scoliosis (AIS)

Author:

Richard Olivia Kristina,Liens Aléthéa,Muirhead DesiRae,Weber KlausORCID

Abstract

Abstract Purpose The PDDD is a ratchet-based, unidirectional expandable rod to treat adolescent idiopathic scoliosis (AIS), primarily by correcting scoliotic deformity without full spinal fusion. We hypothesized that the device will be fully tolerated by the host and, if aseptic screw loosening occurs, it will be unrelated to wear particle formation. Methods This study comprised tissue samples from seven patients from a prospective study (NCT04296903) to assess the PDDD’s safety and benefits, reoperated due to complications. Host response was assessed from histological slides (four levels/implant) in accordance with GLP and ISO10993-6:2016. The elementary chemical composition of wear particles present in tissue sections was quantified by energy dispersive X-ray spectroscopy (EDX). Results Host reaction was minor, characterized by low levels of diverse inflammatory cells, mild fibrosis, occasional small necrotic foci, neovascularization, hemorrhage, and, rarely, small bone fragments. Twenty-four of 28 tissue sections displayed varying degrees of wear particles (black discoloration), and most sections (17) were scored as 1 (< 25% of the sample). The discoloration observed corresponded to black-appearing, fine granular pigment. EDX analysis confirmed particles were composed of titanium, aluminum, and vanadium. Twenty-six of 28 samples were scored zero for necrosis and 2/28 were scored 1. Eleven samples were scored zero for fibrosis, 12 as 1, and five as 2. No aseptic screw loosening occurred. Conclusion The PDDD induced minimal host reaction with little or no degeneration, inflammation or fibrosis. No changes present could be expected to promote device failure. The PDDD implant for treating AIS is well-tolerated and locally safe.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3