Lateral fenestration of lumbar intervertebral discs in rabbits: development and characterisation of an in vivo preclinical model with multi-modal endpoint analysis

Author:

Crowley James D.ORCID,Oliver Rema A.,Wang Tian,Pelletier Matthew H.ORCID,Walsh William R.ORCID

Abstract

Abstract Purpose To evaluate the biological and biomechanical effects of fenestration/microdiscectomy in an in vivo rabbit model, and in doing so, create a preclinical animal model of IVDD. Methods Lateral lumbar IVD fenestration was performed in vivo as single- (L3/4; n = 12) and multi-level (L2/3, L3/4, L4/5; n = 12) fenestration in skeletally mature 6-month-old New Zealand White rabbits. Radiographic, micro-CT, micro-MRI, non-destructive robotic range of motion, and histological evaluations were performed 6- and 12-weeks postoperatively. Independent t tests, one-way and two-way ANOVA and Kruskal–Wallis tests were used for parametric and nonparametric data, respectively. Statistical significance was set at P < 0.05. Results All rabbits recovered uneventfully from surgery and ambulated normally. Radiographs and micro-CT demonstrated marked reactive proliferative osseous changes and endplate sclerosis at fenestrated IVDs. Range of motion at the fenestrated disc space was significantly reduced compared to intact controls at 6- and 12-weeks postoperatively (P < 0.05). Mean disc height index percentage for fenestrated IVDs was significantly lower than adjacent, non-operated IVDs for both single and multi-level groups, at 6 and 12 weeks (P < 0.001). Pfirrmann MRI IVDD and histological grading scores were significantly higher for fenestrated IVDs compared to non-operated adjacent and age-matched control IVDs for single and multi-level groups at 6 and 12 weeks (P < 0.001). Conclusions Fenestration, akin to microdiscectomy, demonstrated significant biological, and biomechanical effects in this in vivo rabbit model and warrants consideration by veterinary and human spine surgeons. This described model may be suitable for preclinical in vivo evaluation of therapeutic strategies for IVDD in veterinary and human patients.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3