Waste bio-tar based N-doped porous carbon for supercapacitors under dual activation: performance, mechanism, and assessment

Author:

Jia Jixiu,Sun Yuxuan,Liu Zhidan,Liu Ziyun,Huo Lili,Kang Kang,Zhao Yanan,Zhao Lixin,Xie Teng,Cao Maojiong,Yao Zonglu

Abstract

AbstractBio-tar extra-produced from biomass pyrolysis is prone to pose a threat to environment and human health. A novel N-doped porous electrode from bio-tar was produced under dual-activation of urea and KOH in this study. One-pot dual-activation played significant roles in N-functional group and micro-mesoporous structure, which resulted in the carbon material with the highest of nitrogen content (4.08%) and the special surface area (1298.26 m2·g−1). Specifically, the potential mechanisms of pore formation and N-doping in the one-pot dual-activation strategy were also proposed as a consequence, the one-pot dual-activated carbon material displayed excellent electrochemical performance with the highest capacitance of 309.5 F·g−1 at 0.5 A·g−1, and the unipolar specific capacitance remained with cyclic characteristics of 80.1% after 10,000 cycles in two-electrode symmetric system. Furthermore, the one-pot dual-activation strategy could create a profit of $1.64–$2.38 per kilogram of bio-tar processed without considering the initial investment and labor costs, which provides new perspectives for the utilization of waste bio-tar. Graphical Abstract

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3