Unveiling the synergistic effect of internal Fe single atoms and introduced Fe3C in Enteromorpha derived biochar with enhanced peroxymonosulfate activation property towards nitenpyram removal

Author:

Xiong Sheng,Zeng Hao,Deng Yaocheng,Tang Rongdi,Wang Jiajia,Li Ling,Zhou Zhanpeng,Gong Daoxin

Abstract

AbstractThis work demonstrated that Enteromorpha biochar with introduced iron (SFB900-3) could activate peroxymonosulfate (PMS) efficiently for NTP remediation. It removed 83.9%–95.1% of NTP in 60 min under a wide pH range from 3.15 to 8.95. Density functional theory (DFT) calculations revealed the synergistic relationship between internal Fe single atoms and introduced Fe compounds—Fe3C. The adsorption capacity of SFB900-3 for persulfate improved from −0.953 eV to −4.214 eV, and the Bader charge analysis showed that Fe atoms as active sites (0.658 e) enhanced the adsorption capacity more than carbon (0.050 e). Moreover, the energy barrier for PMS dissociation reduced from 0.072 eV to −5.372  eV due to the longer length of O–O bond under the synergistic effect of Fe single atom and Fe3C which increased from 1.467 Å to 3.890 Å. The quenching experiment confirmed that 1O2 was the main active substance in NTP degradation and its contribution rate was 88.2%, which was further verified by EPR detection. The effect factor experiments proved that the SFB900-3/PMS system had stable and efficient activity for NTP removal, which remained at 73.6% removal rate after three rounds of tests. This work provided novel guidance for constructing efficient and stable biochar-based materials for organic pollutant remediation. Graphical Abstract

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Training Program for Excellent Young Innovators of Changsha

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3