Conversion of biochar into sulfonate-bearing solid acids used for the hydrolysis of tylosin: the effect of aromaticity and degree of condensation

Author:

Xie Qianqian,Yang Xiao,Sarkar Binoy,Dou XiaominORCID,Withana Piumi Amasha,Ok Yong SikORCID

Abstract

AbstractIn the last few decades, sulfonated carbon materials have garnered significant attention as Brønsted solid acid catalysts. The sulfonation process and catalytic activity of sulfonated biochar can be influenced by the aromaticity and degree of condensation exhibited by biochar. However, the relationships between the aromaticity, sulfonating ability, and resultant catalytic activity are not fully understood. In this study, biochar samples pyrolyzed at 300–650 °C exhibiting different aromaticity and degrees of condensation were sulfonated and employed as sulfonate-bearing solid catalysts for hydrolytically removing tylosin. They exhibited excellent hydrolytic performance and their kinetic constants were positively correlated with the total acidity and negatively correlated with their aromaticity. This study has uncovered the relationship between the structure, properties, sulfonating ability, and subsequent hydrolytic performance of biochar samples. It was observed that the aromaticity of biochar decreased as the pyrolysis temperature increased. Lower pyrolysis temperatures resulted in a reduced degree of condensation, smaller ring size, and an increased number of ring edge sites available for sulfonation, ultimately leading to enhanced catalytic performance. These findings provide valuable insights into the fundamental chemistry behind sulfonation upgrading of biochar, with the aim of developing functional catalysts for mitigating antibiotics in contaminated water. Graphical Abstract

Funder

National Natural Science Foundation of China

State Key Joint Laboratory of Environmental Simulation and Pollution Control

National Research Foundation of Korea(NRF), funded by the Ministry of Education

National Research Foundation of Korea(NRF) grant funded by the Korea government

OJEong Resilience Institute (OJERI) at Korea University.

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3