Simultaneous dissipation of trichloroethene and arsenic from co-contaminated groundwater by coupling biodechlorination and biodetoxification with assistance of biochar

Author:

Chen Hao,Li Deping,Mašek Ondřej,Zhai Ying,Rong Guoqiang,Xu Xiaoyun,Cao Xinde,Zhao Ling

Abstract

AbstractCo-contamination of groundwater with trichloroethene (TCE) and arsenic (As) is a widespread problem in industrial sites. The simultaneous biological removal of As and TCE has not yet been developed. This study incorporated biochar into anaerobic dechlorination system to achieve a greatly accelerated dissipation and co-removal of TCE and As. Biochar eliminated microbial lag (6 days) and achieved a 100% TCE removal within 12 days even at a relatively high initial concentration (TCE: 30 mg L−1; As(V): 4 mg L−1), while without biochar, only 75% TCE was removed until day 18. Biochar adsorbed TCE and the intermediate products allowing them to be degraded on its surface gradually, maintaining a high metabolic activity of microbes. Biochar facilitated the preferential colonization of its surfaces by dechlorinating microorganisms (Clostridium and Dehalococcoides) and suppressed hydrogen-competing microorganisms (Desulfovibrio) in water. Biochar itself cannot adsorb As, however, separation of biochar carrying the As-laden microorganisms achieved 50–70% As-removal from groundwater. The biochar-amended incubations were found to be enriched with microbes possessing more crucial As-transforming genes (K00537-arsC and K07755-AS3MT), and upregulated amino acid metabolism, thus enhancing the self-detoxification ability of microorganisms to transform As(V) to As(III) or volatile organic As. This study proposes a strategy of regulating microbes’ metabolic activity by biochar to achieve simultaneous removal of coexisting contaminations, which is an important step prior to examining the feasibility of biochar application for enhanced bioremediation. Graphical Abstract

Funder

Key Technology Research and Development Program of Shandong

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

Reference58 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3