Biochar and organic substitution improved net ecosystem economic benefit in intensive vegetable production

Author:

Bi Ruiyu,Zhang Qianqian,Zhan Liping,Xu Xintong,Zhang Xi,Dong Yubing,Yan Xiaoyuan,Xiong ZhengqinORCID

Abstract

AbstractBiochar amendment and substituting chemical fertilizers with organic manure (organic substitution) have been widely reported to increase crop production and decrease reactive nitrogen (Nr) loss including nitrous oxide (N2O), nitric oxide (NO), and ammonia (NH3) emissions, and N runoff and leaching. However, few comprehensive evaluations have been performed on the environmental and economic aspects of biochar amendment or organic substitution. Here, we studied the comprehensive effects of biochar amendment, organic substitution, and biochar amendment combined with organic substitution on crop production, Nr loss, and net ecosystem economic benefit (NEEB) in intensive vegetable production by integrating life-cycle assessment for Nr footprints, empirical models for NH3 volatilization and N runoff and leaching derived from peer-reviewed publications and validated by the current measurements and direct field measurement for N2O and NO emissions during 5 consecutive years of vegetable crop rotations. Five fertilization treatments were applied (SN: synthetic fertilizer application; SNB: SN plus 20 t ha−1 biochar amendment; SNM: substituting 50% of chemical N fertilizer with organic manure; SNMB: SNM plus 20 t ha−1 biochar amendment; and CK: no fertilizer or biochar addition). Compared with the SN, the SNB increased vegetable yield (28.4%, p < 0.05; interannually varying from − 10 to 74.9%) and nitrogen use efficiency (29.2%, interannually varying from − 39.7 to 150.4%), and decreased field Nr loss (45.4%, p < 0.01; interannually varying from − 40.3 to 78.4%), and thus improved NEEB by 7.1%; meanwhile, the SNM increased vegetable yield (11.6%, interannually varying from − 5.4 to 27.1%) and nitrogen use efficiency (45.7%, p < 0.05; interannually varying from 2.3 to 154%), reduced field Nr loss (34.9%, p < 0.01; interannually varying from 8.4–39.0%), and thus improved NEEB by 17.8% (p < 0.05) compared to the SN, being 56.0 × 103 Chinese Yuan (CNY) ha−1 crop−1. Due to the high foreground Nr loss during organic manure production and high input costs of biochar production, the SNMB decreased the NEEB by 8.0% as compared to the SN. Moreover, the SNB and SNM improved vegetable qualities by increasing protein, soluble sugar, and vitamin C contents while decreasing nitrate content (p < 0.05). Therefore, single application of biochar amendment or organic substitution would achieve better NEEB and product quality in vegetable production. Graphical Abstract

Funder

National Natural Science Foundation of China

Graduate Research and Innovation Projects of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3