Co-incorporation of hydrotalcite and starch into biochar-based fertilizers for the synthesis of slow-release fertilizers with improved water retention

Author:

Lu Jiawei,Li Yongfu,Cai Yanjiang,Jiang Peikun,Yu Bing

Abstract

AbstractThe unsatisfactory nutrient slow-release and water-retention performance of traditional biochar-based compound fertilizers (BCF) severely limit their practical application. Herein, a new type of slow-release fertilizer with high water retention was fabricated via the incorporation of hydrotalcite and starch into BCF, named as HS-BCF. The water-retention and nutrient releasing performance of the prepared HS-BCF and related nutrient slow-release mechanism were investigated. The results showed that the incorporation of hydrotalcite and starch into BCF could increase the soil water-retention ratio by 5–10% points. The accumulated N, P, and K leaching amounts of HS-BCF in soil within 30 days  were 49.4%, 13.3%, and 87.4% of BCF at most, respectively. Kinetic analysis indicated that the release of nutrients from HS-BCF was attributed to the coupling of the diffusion-controlled and relaxation-controlled mechanism. Moreover, hydrotalcite could bind with P in HS-BCF, contributing to the enhanced durability of P in HS-BCF. Finally, pot experiments showed that the N–P–K utilization efficiencies of HS-BCF were all higher than those of BCF due to a better synchronization between the nutrient release of HS-BCF and the uptake of tomato plants. Overall, the study may provide a promising strategy for simultaneously improving the water-retention and slow-release performance of traditional biochar-based fertilizers. Graphical Abstract

Funder

the Key Research and Development Project of Science and Technology Department of Zhejiang Province

Key Technologies Research and Development Program

talent starting-up project of research development fund of Zhejiang A&F University

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3