A sustainable preparation strategy for the nitrogen-doped hierarchical biochar with high surface area for the enhanced removal of organic dye

Author:

Mao Yiting,Cai Bo,Huang Ming,Liu Xiaohuan,Zhang Wenbiao,Ma ZhongqingORCID

Abstract

AbstractBiochar is a potential porous carbon to remove the contaminants from aquatic environments. Herein, N-doped hierarchical biochar was produced by the combined approach of ammonia torrefaction pretreatment (ATP) and alkali activation. ATP could not only incorporate N element into poplar wood, but obtain the loose structure of poplar wood. The highest surface area of N-doped hierarchical biochar was 2324.61 m2 g−1 after ammonia wet torrefaction pretreatment, which was higher than that of activation carbon (1401.82 m2 g−1) without torrefaction pretreatment, the hierarchical biochar (2111.03 m2 g−1) without ammonia atmosphere. The N-doped hierarchical biochar presented the highest adsorption capacity (564.7 mg g−1) of methyl orange (MO), which was 14.64-fold of that on biochar without N doping. In addition, the pseudo-second-order and Langmuir model fitted well with the adsorption kinetics and isotherms of the N-doped hierarchical biochar. The incorporation of nitrogen element could not only tune the distribution of surface electrons on biochar, but optimize the ambient condition of adsorption active sites as well. The adsorption of MO might occur on the N-/O-containing functional groups through the electrostatic interaction, the π-π dispersion interaction, and the hydrogen bonding. The density functional theory showed that the graphitic-N and pyridinic-N were the dominant adsorption active sites. Graphical Abstract

Funder

Key R&D Program of Zhejiang Province

Fundamental Research Funds for the Provincial Universities of Zhejiang

Natural Science Foundation of Zhejiang Province

Youth Talent Support Program by National Forestry and Grassland Administration

Research Foundation of Talented Scholars of Zhejiang A & F University

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3