Zn/Fe bimetallic modified Spartina alterniflora-derived biochar heterostructure with superior catalytic performance for the degradation of malachite green

Author:

Jing Hua,Ji Lili,Li Zilong,Wang Zhen,Li Ran,Ju Kaixuan

Abstract

AbstractIn this study, the synchronous magnetized carbonization method was utilized for preparing photocatalysis ZnO-Fe@SC heterostructure, which exhibited degradation efficiency 99.14% (60 min) for malachite green (200 mg/L) and could still maintain good performance after 5 cycles. The prepared ZnO-Fe@SC was analyzed using UV–Vis DRS, PL, SEM, TEM, BET, FTIR, XPS and VSM, and LC–MS for degradation products. The results indicate that photocatalyst has favorable magnetic properties, chemical stability and low charge carriers (e/h+) recombination rate. The modification of bimetals enables the composite photocatalyst to enhance the intensity of photogenerated electron transition. Moreover, quenching experiment revealed that the photo-generated holes (h+) and superoxide radicals (·O2−) were the dominant active species during the photocatalytic process, which degraded malachite green into small molecules by demethylation, deamination, ring-opening reactions as deducted from LC–MS analysis. ZnO-Fe@SC was prepared using a green, safe, low cost and operable synthetic method, which has a broad market potential in the field of environmental remediation. Graphical Abstract

Funder

the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3