Towards a high-quality fertilizer based on algae residues treated via hydrothermal carbonization. Trends on how process parameters influence inorganics

Author:

Moloeznik Paniagua DanielaORCID,Krenz Lina Maja Marie,Libra Judy A.,Korf Nathalie,Rotter Vera Susanne

Abstract

AbstractThe use of beach-cast macroalgae as a fertilizer (F) or soil amendment (SA) is coming back into focus, due to its highly efficient transformation of CO2, nutrients, salts and minerals from its aqueous surroundings into biomass. This research studied the hydrothermal carbonization (HTC) of Fucus vesiculosus macroalgae to hydrochar and evaluated its feasibility for use in soil applications. F. vesiculosus was submitted to HTC following a full factorial design of experiments with three HTC process parameters varied to assess their impact on the hydrochars: temperature (T: 160, 190, 220 °C), solid content (%So: 20, 35%), and process water recirculation (PWrec: yes and no). In general, F. vesiculosus and its hydrochars were rich in nutrients, but also contained regulated heavy metals. Investigation of the partitioning behavior of inorganic elements between the hydrochars and process water showed that heavy metals like Cr, Pb, Co and Cu tended to accumulate in the hydrochar, unaffected by HTC conditions. Nutrients such as P, N, B, and Mn were primarily found in the hydrochar and could be partially influenced to transfer to process water by changing %So and T. The correlation between the mass fractions of 22 elements in the hydrochar and HTC process parameters was studied. T was the most influential parameter, showing a significant positive correlation for eleven elements. %So and PWrec showed inconsistent effects on different elements. When process water was recirculated, some elements decreased (Ca, Cd, Fe) while others increased (K, Na, B, N) in the hydrochar. Assessment against various regulations and standards for F and SA revealed that F. vesiculosus complied with Cd limit values for most rules including the EURF and B, and was regulated only in the RAL for SA, over the limit value. In contrast, the limit value of Cd for both F and SA applications was surpassed in the 13 hydrochars. The contents of N, P, K, S, and Na in the feedstock and hydrochars complied with European F and SA rules, while they were too high for German rules on SA. The other limits for F rules were achieved (under certain HTC process parameters) except for P (lower than the requirements in F for F. vesiculosus and its hydrochars). Graphical Abstract

Funder

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3