Harnessing the power of functionalized biochar: progress, challenges, and future perspectives in energy, water treatment, and environmental sustainability

Author:

Yameen Muhammad Zubair,Naqvi Salman RazaORCID,Juchelková Dagmar,Khan Muhammad Nouman Aslam

Abstract

AbstractThe swift advancement of sustainable energy technologies, coupled with the urgent need to address environmental challenges, has generated considerable interest in the multifaceted applications of biochar materials to promote energy, water, and environmental sustainability. This comprehensive review examines recent advancements in the production and applications of functionalized biochar materials, emphasizing their pivotal roles in energy conversion and storage, wastewater treatment, CO2 reduction, soil amelioration, and the promotion of carbon neutrality within a circular economy framework. The functionalization of biochar materials involves surface chemistry and porosity modifications, achieved through techniques like templating, chemical activation, metal impregnation, or heteroatom doping. These modifications substantially enhance the catalytic activity, energy storage capacity, and cycling stability of biochar materials, making them particularly effective in diverse energy applications such as water splitting, fuel cells, and supercapacitors. Additionally, functionalized biochar materials demonstrate remarkable efficacy as catalysts and adsorbents in wastewater treatment, proficiently removing pollutants like heavy metals, organic contaminants, and nutrients, thereby facilitating resource recovery from wastewater. The review also underscores the potential of functionalized biochar materials in CO2 capture and conversion, exploring innovative strategies to augment their CO2 adsorption capacity and state-of-the-art catalytic processes for transforming captured CO2 into valuable fuels and chemicals. In summary, this review offers valuable insights into the recent advancements in biochar research, underscoring its substantial commercial potential as a versatile material contributing to a cleaner and more sustainable future.Article Highlights The current status of biochar research is comprehensively reviewed. The potential of biochar in energy, water, and environmental fields is critically examined. Technology readiness levels (TRLs) of various biochar-based technologies are evaluated. Graphical Abstract

Funder

K2

Karlstad University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3