Microbial mechanisms of organic matter mineralization induced by straw in biochar-amended paddy soil

Author:

Liu Qi,Wu Cuiyan,Wei Liang,Wang Shuang,Deng Yangwu,Ling Wenli,Xiang Wu,Kuzyakov Yakov,Zhu Zhenke,Ge TidaORCID

Abstract

AbstractCombined straw and straw-derived biochar input is commonly applied by farmland management in low-fertility soils. Although straw return increases soil organic matter (SOM) contents, it also primes SOM mineralization. The mechanisms by which active microorganisms mineralize SOM and the underlying factors remain unclear for such soils. To address these issues, paddy soil was amended with 13C-labeled straw, with and without biochar (BC) or ferrihydrite (Fh), and incubated for 70 days under flooded conditions. Compound-specific 13C analysis of phospholipid fatty acids (13C-PLFAs) allowed us to identify active microbial communities utilizing the 13C-labeled straw and specific groups involved in SOM mineralization. Cumulative SOM mineralization increased by 61% and 27% in soils amended with Straw + BC and Straw + Fh + BC, respectively, compared to that with straw only. The total PLFA content was independent of the straw and biochar input. However, 13C-PLFAs contents increased by 35–82% after biochar addition, reflecting accelerated microbial turnover. Compared to that in soils without biochar addition, those with biochar had an altered microbial community composition-increased amounts of 13C-labeled gram-positive bacteria (13C-Gram +) and fungi, which were the main active microorganisms mineralizing SOM. Microbial reproduction and growth were susceptible to nutrient availability. 13C-Gram + and 13C-fungi increased with Olsen P but decreased with dissolved organic carbon and $${\text{NO}}_{3}^{ - }$$ NO 3 - contents. In conclusion, biochar acts as an electron shuttle, stimulates iron reduction, and releases organic carbon from soil minerals, which in turn increases SOM mineralization. Gram + and fungi were involved in straw decomposition in response to biochar application and responsible for SOM mineralization. Graphical Abstract

Funder

National Natural Science Foundation of China

Ningbo Municipal Bureau of Science and Technology

the “Pioneer” and “Leading Goose” R&D Program of Zhejiang

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3