Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis

Author:

Singh HardeepORCID,Northup Brian K.,Rice Charles W.,Prasad P. V. Vara

Abstract

AbstractBiochar is a widely known soil amendment. Here we synthesize the available information on influence of biochar application on different soil properties and crop productivity using meta-analysis. Global data on influence of biochar applications on different soil physical, chemical, microbial properties, and crop productivity were extracted from literature and statistically analyzed. Based on selection criteria, 59 studies from the literature published between 2012 and 2021 were selected for the meta-analysis. Correlations were developed between effect size of biochar application on different soil properties and crop productivity. Application of biochar increased soil pH, cation exchange capacity, and organic carbon by 46%, 20%, and 27%, respectively, with greater effects in coarse and fine-textured soils. Effects on chemical properties were variable among biochar prepared from different feedstocks. Among physical properties, biochar application reduced bulk densities by 29% and increased porosity by 59%. Biochar prepared at higher pyrolytic temperatures (> 500 ℃) improved bulk density and porosity to greater extents (31% and 66%, respectively). Biochar prepared at lower pyrolytic temperatures (< 500 ℃) had a greater effect on microbial diversity (both bacterial and fungal), with more diverse bacterial populations in medium and coarse textured soils, while fungal diversity increased in fine textured soils. Biochar applications increased crop productivity only in fine and coarse textured soil. The effect size of biochar application on crop productivity was correlated with responses to physical properties of soils. The meta-analysis highlighted the need to conduct long-term field experiments to provide better explanations for changes in biochar properties as it undergoes aging, its longer-term effects on soil properties, and timing of re-application of different biochars.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3