Author:
Fang Yueru,Ali Amjad,Gao Yuxi,Zhao Peng,Li Ronghua,Li Xianxian,Liu Junxi,Luo Yuan,Peng Yaru,Wang Hailong,Liu Hongbin,Zhang Zengqiang,Pan Junting
Abstract
AbstractConversion of organic waste into engineered metal-biochar composite is an effective way of enhancing biochar’s efficiency for adsorptive capture of phosphorus (P) from aqueous media. Thus, various strategies have been created for the production of metal-biochar composites; however, the complex preparation steps, high-cost metal salt reagent application, or extreme process equipment requirements involved in those strategies limited the large-scale production of metal-biochar composites. In this study, a novel biochar composite rich in magnesium oxides (MFBC) was directly produced through co-pyrolysis of magnesite with food waste; the product, MFBC was used to adsorptively capture P from solution and bio-liquid wastewater. The results showed that compared to the pristine food waste biochar, MFBC was a uniformly hybrid MgO biochar composite with a P capture capacity of 523.91 mg/g. The capture of P by MFBC was fitted using the Langmuir and pseudo-first-order kinetic models. The P adsorptive capture was controlled by MgHPO4 formation and electrostatic attraction, which was affected by the coexisting F− and CO32− ions. MFBC could recover more than 98% of P from the solution and bio-liquid wastewater. Although the P-adsorbed MFBC showed very limited reusability but it can be substituted for phosphate fertiliser in agricultural practices. This study provided an innovative technology for preparing MgO-biochar composite against P recovery from aqueous media, and also highlighted high-value-added approaches for resource utilization of bio-liquid wastewater and food waste.
Graphical Abstract
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献