Synthesis, characterization, safety design, and application of NPs@BC for contaminated soil remediation and sustainable agriculture

Author:

Zheng Tong,Ouyang Shaohu,Zhou Qixing

Abstract

AbstractBiochar (BC) and nanoparticle-decorated biochar (NPs@BC) have emerged as potential high-performance function materials to facilitate simultaneous soil remediation and agricultural production. Therefore, there is an urgent need to incorporate environmental sustainability and human health targets into BC and NPs@BC selection and design processes. In contrast to extensive research on the preparation, modification, and environmental application of BC to soil ecosystems, reports about the adapted framework and material selection strategy of NPs@BC under environmental and human health considerations are still limited. Nevertheless, few studies systematically explored the impact of NPs@BC on soil ecosystems, including soil biota, geochemical properties, and nutrient cycles, which are critical for large-scale utilization as a multifunctional product. The main objective of this systematic literature review is  to show the high degrees of contaminant removal for different heavy metals and organic pollutants, and to quantify the economic, environmental, and toxicological outcomes of NPs@BC in the context of sustainable agriculture. To address this need, in this review, we summarized  synthesis techniques and characterization, and  highlighted  a linkage between the evolution of NPs@BC properties with the framework for sustainable NPs@BC selection and design based on environmental effects, hazards, and economic considerations. Then, research advances in contaminant remediation for heavy metals and organic pollutants of NPs@BC are minutely discussed. Eventually, NPs@BC positively acts on sustainable agriculture, which is declared. In the meantime, evaluating from the perspective of plant growth, soil characterizations as well as carbon and nitrogen cycle  was conducted, which is critical for comprehending the NPs@BC environmental sustainability. Our work may develop a potential framework that can inform decision-making for  the use of NPs@BC to facilitate promising environmental applications and prevent unintended consequences, and is expected to guide and boost the development of highly efficient NPs@BC for sustainable agriculture and environmental applications. Graphical Abstract

Funder

the Natural Science Foundation of China

Fellowship of China Postdoctoral Science Foundation

the National Key Research and Development Project

People's Republic of China as a 111 program

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3