Removal of toxic elements from aqueous environments using nano zero-valent iron- and iron oxide-modified biochar: a review

Author:

Shaheen Sabry M.ORCID,Mosa AhmedORCID,Natasha ,Abdelrahman HamadaORCID,Niazi Nabeel KhanORCID,Antoniadis VasileiosORCID,Shahid Muhammad,Song HocheolORCID,Kwon Eilhann E.ORCID,Rinklebe JörgORCID

Abstract

AbstractBiochar (BC) has gained attention for removal of toxic elements (TEs) from aqueous media; however, pristine biochar often exhibits low adsorption capability. Thus, various modification strategies in BC have been developed to improve its removal capability against TEs. Nanoscale zero-valent iron (nZVI) and iron oxides (FeOx) have been used as sorbents for TE removal. However, these materials are prone to agglomeration and also expensive, which make their usage limited for large-scale applications. The nZVI technical demerits could be resolved by the development of BC-based composite sorbents through the loading of nZVI or FeOx onto BC surface. Nano zero-valent iron modified BC (nZVIBC), FeOx-modified BC (FeOxBC) have attracted attention for their capability in removing pollutants from the aqueous phases. Nonetheless, a potential use of nZVIBC and FeOxBC for TE removal from aqueous environments has not been well-realized or reviewed. As such, this article reviews: (i) the preparation and characterization of nZVIBC and FeOxBC; (ii) the capacity of nZVIBC and FeOxBC for TE retention in line with their physicochemical properties, and (iii) TE removal mechanisms by nZVIBC and FeOxBC. Adopting nZVI and FeOx in BC increases its sporptive capability of TEs due to surface modifications in morphology, functional groups, and elemental composition. The combined effects of BC and nZVI, FeOx or Fe salts on the sorption of TEs are complex because they are very specific to TEs. This review identified significant opportunities for research and technology advancement of nZVIBC and FeOxBC as novel and effective sorbents for the remediation of TEs contaminated water.

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3