Biochars reduce irrigation water sodium adsorption ratio

Author:

Awan Saima,Ippolito James A.ORCID,Ullman J. L.,Ansari Kamran,Cui Liqiang,Siyal A. A.

Abstract

AbstractIrrigation water quality plays a vital role in sustaining crop productivity and feeding a growing world population. In many countries, continued agricultural water reuse can lead to greater water-soluble salt concentrations, and in particular Na; finding means by which irrigation water Na, and thus sodium adsorption ratios (SAR), can be reduced would reduce the rate at which soil sodification occurs. Four biochars, containing a variety of organic functional groups and electrochemistries, were examined for their potential to sorb and remove Na from simulated irrigation water, and subsequently reduce water SAR. Two batch experiments examined the role that wheat straw biochar, lodgepole pine biochar, Kentucky bluegrass biochar, and hemp biochar played in terms of sorbing sodium over time or application rate. Of the four biochars examined, hemp biochar had the lowest oxidation–reduction potential (ORP; ~ 0–100 mV), sorbed the greatest Na amount (up to 923 mg kg−1), and released Ca and Mg (up to 115 and 63 mg kg−1, respectively) into solution, all of which led to a significant reduction in water SAR (from 8.8 to 7.3; 17% decrease). Sodium sorption onto hemp biochar better fit a Langmuir versus a Freundlich isotherm, yet followed a pseudo-second-order model better than a pseudo-first-order kinetic model. The data suggest that Na ions formed a monolayer on the hemp biochar surface, influenced by associations with π electrons, but given time the Na ions may diffuse into biochar pores or more slowly interact with biochar-borne π electrons. Hemp biochar shows promise in reducing the SAR of Na-impacted waters. Future investigations should focus on additional laboratory, greenhouse, and field trials with hemp biochar and other biochars designed to have similar or superior properties for sorbing excess irrigation water Na and improving crop growth.

Funder

United States Agency for International Development

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3