Do Speed and Proximity Affect Human-Robot Collaboration with an Industrial Robot Arm?

Author:

Story MatthewORCID,Webb Phil,Fletcher Sarah R.,Tang Gilbert,Jaksic Cyril,Carberry Jon

Abstract

AbstractCurrent guidelines for Human-Robot Collaboration (HRC) allow a person to be within the working area of an industrial robot arm whilst maintaining their physical safety. However, research into increasing automation and social robotics have shown that attributes in the robot, such as speed and proximity setting, can influence a person’s workload and trust. Despite this, studies into how an industrial robot arm’s attributes affect a person during HRC are limited and require further development. Therefore, a study was proposed to assess the impact of robot’s speed and proximity setting on a person’s workload and trust during an HRC task. Eighty-three participants from Cranfield University and the ASK Centre, BAE Systems Samlesbury, completed a task in collaboration with a UR5 industrial robot arm running at different speeds and proximity settings, workload and trust were measured after each run. Workload was found to be positively related to speed but not significantly related to proximity setting. Significant interaction was not found for trust with speed or proximity setting. This study showed that even when operating within current safety guidelines, an industrial robot can affect a person’s workload. The lack of significant interaction with trust was attributed to the robot’s relatively small size and high success rate, and therefore may have an influence in larger industrial robots. As workload and trust can have a significant impact on a person’s performance and satisfaction, it is key to understand this relationship early in the development and design of collaborative work cells to ensure safe and high productivity.

Funder

Engineering and Physical Sciences Research Council

BAE Systems

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science,Human-Computer Interaction,Philosophy,Electrical and Electronic Engineering,Control and Systems Engineering,Social Psychology

Reference58 articles.

1. World Robotics (2019) Executive summary -world robotics 2019 industrial robots

2. IFR (2020) Executive summary world robotics 2020 industrial robots

3. Villani V, Pini F, Leali F, Secchi C (2018) Survey on human-robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics. https://doi.org/10.1016/j.mechatronics.2018.02.009

4. ISO (2011) ISO 10218 Robots and robotic devices - safety requirements for industrial robots, with parts I (‘Robots’) and 2 (‘Robot systems and integration’)

5. ISO (2016) ISO/TS 15066 - Collaborative robots: present status

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3