Abstract
AbstractRecent studies have revealed the key importance of modelling personality in robots to improve interaction quality by empowering them with social-intelligence capabilities. Most research relies on verbal and non-verbal features related to personality traits that are highly context-dependent. Hence, analysing how humans behave in a given context is crucial to evaluate which of those social cues are effective. For this purpose, we designed an assistive memory game, in which participants were asked to play the game obtaining support from an introvert or extroverted helper, whether from a human or robot. In this context, we aim to (i) explore whether selective verbal and non-verbal social cues related to personality can be modelled in a robot, (ii) evaluate the efficiency of a statistical decision-making algorithm employed by the robot to provide adaptive assistance, and (iii) assess the validity of the similarity attraction principle. Specifically, we conducted two user studies. In the human–human study (N=31), we explored the effects of helper’s personality on participants’ performance and extracted distinctive verbal and non-verbal social cues from the human helper. In the human–robot study (N=24), we modelled the extracted social cues in the robot and evaluated its effectiveness on participants’ performance. Our findings showed that participants were able to distinguish between robots’ personalities, and not between the level of autonomy of the robot (Wizard-of-Oz vs fully autonomous). Finally, we found that participants achieved better performance with a robot helper that had a similar personality to them, or a human helper that had a different personality.
Funder
H2020 Marie Sklodowska-Curie Actions
National Natural Science Foundation of China-Yunnan Joint Fund
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science,Human-Computer Interaction,Philosophy,Electrical and Electronic Engineering,Control and Systems Engineering,Social Psychology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献