Enhancing Robotic Collaborative Tasks Through Contextual Human Motion Prediction and Intention Inference

Author:

Laplaza JavierORCID,Moreno FrancescORCID,Sanfeliu AlbertoORCID

Abstract

AbstractPredicting human motion based on a sequence of past observations is crucial for various applications in robotics and computer vision. Currently, this problem is typically addressed by training deep learning models using some of the most well-known 3D human motion datasets widely used in the community. However, these datasets generally do not consider how humans behave and move when a robot is nearby, leading to a data distribution different from the real distribution of motion that robots will encounter when collaborating with humans. Additionally, incorporating contextual information related to the interactive task between the human and the robot, as well as information on the human willingness to collaborate with the robot, can improve not only the accuracy of the predicted sequence but also serve as a useful tool for robots to navigate through collaborative tasks successfully. In this research, we propose a deep learning architecture that predicts both 3D human body motion and human intention for collaborative tasks. The model employs a multi-head attention mechanism, taking into account human motion and task context as inputs. The resulting outputs include the predicted motion of the human body and the inferred human intention. We have validated this architecture in two different tasks: collaborative object handover and collaborative grape harvesting. While the architecture remains the same for both tasks, the inputs differ. In the handover task, the architecture considers human motion, robot end effector, and obstacle positions as inputs. Additionally, the model can be conditioned on the desired intention to tailor the output motion accordingly. To assess the performance of the collaborative handover task, we conducted a user study to evaluate human perception of the robot’s sociability, naturalness, security, and comfort. This evaluation was conducted by comparing the robot’s behavior when it utilized the prediction in its planner versus when it did not. Furthermore, we also applied the model to a collaborative grape harvesting task. By integrating human motion prediction and human intention inference, our architecture shows promising results in enhancing the capabilities of robots in collaborative scenarios. The model’s flexibility allows it to handle various tasks with different inputs, making it adaptable to real-world applications.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3