Abstract
AbstractWe consider the Newton stratification on Iwahori double cosets for a connected reductive group. We prove the existence of Newton strata whose closures cannot be expressed as a union of strata, and show how this is implied by the existence of non-equidimensional affine Deligne–Lusztig varieties. We also give an explicit example for a group of type $$A_4$$
A
4
.
Funder
european research council
fakultät für mathematik, technische universitäät münchen
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Beazley, E.T.: Codimensions of Newton strata for SL(3) in the Iwahori case. Math. Zeitschrift 263, 499–540 (2009)
2. Chai, C.-L.: Newton polygons as lattice points. Am. J. Math. 122(5), 967–990 (2000)
3. Görtz, U., He, X.: Dimension of affine Deligne–Lusztig varieties in affine flag varieties. Doc. Math. 15, 1009–1028 (2010)
4. Görtz, U., He, X.: P-alcoves and nonemptiness of affine Deligne–Lusztig varieties. Ann. Sci. École Norm. Sup. 48, 647–665 (2015)
5. Hamacher, P.: The almost product structure of Newton strata in the Deformation space of a Barsotti-Tate group with crystalline Tate tensors. Math. Z. 287, 1255–1277 (2017)