Fitting ideals and various notions of equivalence for modules

Author:

Greither Cornelius,Kataoka Takenori

Abstract

AbstractRecently there has been a lot of work on determining the Fitting ideals of arithmetic modules over groups rings, first and foremost of class groups and their Pontryagin duals. In particular, it has turned out that these Fitting ideals are usually non-principal and may be described, up to principal ideals, in terms of group-theoretical information only. The involved principal ideal factors are essentially given by values of equivariant L-functions. The present paper is not concerned with these L-functions but rather focuses on a systematic understanding of the Fitting ideals up to principal factors. To this end, we develop a certain notion of “equivalence of modules” over suitable commutative rings R. We establish that understanding the equivalence of R-modules is closely related to the classification of R-lattices. We also offer a construction of a category, inspired by derived categories, which embodies our new notion of “equivalence”.

Funder

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference10 articles.

1. Atsuta, M., Kataoka, T.: Fitting ideals of class groups for CM abelian extensions. preprint, arXiv:2104.14765 (2021)

2. Cornacchia, P., Greither, C.: Fitting ideals of Class groups of real fields with prime power conductor. J. Number Theor. 73, 459–471 (1998)

3. Curtis, C. W., Reiner, I.: Methods of representation theory. Vol. I. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1990. With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication

4. Dasgupta, S., Kakde, M.: On the Brumer-Stark conjecture. Annals Math. 197(1), 289–388 (2023)

5. Dieterich, E.: Lattices over group rings of cyclic $$p$$-groups and generalized factor space categories. J. Lond. Math. Soc. (2), 31(3), 407–424 (1985)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimal resolutions of Iwasawa modules;Research in Number Theory;2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3