Abstract
AbstractFor an additive polynomial and a positive integer, we define an irreducible smooth representation of a Weil group of a non-archimedean local field. We study several invariants of this representation. We obtain a necessary and sufficient condition for it to be primitive.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Bouw, I., Ho, W., Malmskog, B., Scheidler, R., Srinivasan, P., Vincent, C.: Zeta functions of a class of Artin–Schreier curves with many automorphisms, Directions in number theory. Assoc. Women Math. Ser., vol. 3, pp. 87–124. Springer, New York (2016)
2. Bushnell, C.J., Henniart, G.: The Local Langlands Conjecture for $$\text{GL}(2)$$. A Series of Comprehensive Studies in Mathematics, vol. 335. Springer, New York (2006)
3. Carlitz, L.: Some theorems on irreducible reciprocal polynomials over a finite field. J. Reine Angew. Math. 227, 212–220 (1967)
4. Coulter, R.S., Havas, G., Henderson, M.: On decomposition of sub-linearised polynomials. J. Aust. Math. Soc. 76(3), 317–328 (2004)
5. Lect. Notes Math.;P Deligne,1977