Abstract
AbstractLet $${\mathbb {K}}={\mathbb {R}},\,{\mathbb {C}}$$
K
=
R
,
C
, the field of reals or complex numbers and $${\mathbb {H}}$$
H
, the skew $${\mathbb {R}}$$
R
-algebra of quaternions. We study the homotopy nilpotency of the loop spaces $$\Omega (G_{n,m}({\mathbb {K}}))$$
Ω
(
G
n
,
m
(
K
)
)
, $$\Omega (F_{n;n_1,\ldots ,n_k}({\mathbb {K}}))$$
Ω
(
F
n
;
n
1
,
…
,
n
k
(
K
)
)
, and $$\Omega (V_{n,m}({\mathbb {K}}))$$
Ω
(
V
n
,
m
(
K
)
)
of Grassmann $$G_{n,m}({\mathbb {K}})$$
G
n
,
m
(
K
)
, flag $$F_{n;n_1,\ldots ,n_k}({\mathbb {K}})$$
F
n
;
n
1
,
…
,
n
k
(
K
)
and Stiefel $$V_{n,m}({\mathbb {K}})$$
V
n
,
m
(
K
)
manifolds. Additionally, homotopy nilpotency classes of p-localized $$\Omega (G^+_{n,m}({\mathbb {K}})_{(p)})$$
Ω
(
G
n
,
m
+
(
K
)
(
p
)
)
and $$\Omega (V_{n,m}({\mathbb {K}})_{(p)})$$
Ω
(
V
n
,
m
(
K
)
(
p
)
)
for certain primes p are estimated, where $$G^+_{n,m}({\mathbb {K}})_{(p)}$$
G
n
,
m
+
(
K
)
(
p
)
is the oriented Grassmann manifolds. Further, the homotopy nilpotency classes of loop spaces of localized homogeneous spaces given as quotients of exceptional Lie groups are investigated as well.
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Arkowitz, M.: Introduction to Homotopy Theory. Universitext. Springer, New York (2011)
2. Berstein, I., Ganea, T.: Homotopical nilpotency. Illinois J. Math. 5, 99–130 (1961)
3. Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localizations. Lecture Notes in Math, vol. 304. Springer, Berlin-New York (1972)
4. Cohen, F.R., Wu, J.: Private communications, March (2017)
5. Ganea, T.: On the loop spaces of projective spaces. J. Math. Mech. 16, 853–858 (1967)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献