Abstract
AbstractIn this note we propose the generalization of the notion of a holomorphic contact structure on a manifold (smooth variety) to varieties with rational singularities and prove basic properties of such objects. Natural examples of singular contact varieties come from the theory of nilpotent orbits: every projectivization of the closure of a nilpotent orbit in a semisimple Lie algebra satisfies our definition after normalization. We show the correspondence between symplectic varieties with the structure of a $$\mathbb {C}^*$$
C
∗
-bundle and the contact ones along with the existence of stratification à la Kaledin. In the projective case we demonstrate the equivalence between crepant and contact resolutions of singularities, show the uniruledness and give a full classification of projective contact varieties in dimension 3.
Publisher
Springer Science and Business Media LLC